九师联盟数列技巧(九师联盟的题怎么样)

今天给各位同学分享九师联盟数列技巧的知识,其中也会对九师联盟的题怎么样进行解释,如果能碰巧解决你现在面临的问题,别忘了分享本站,现在开始吧!

本文目录一览:

数列解题有何技巧?

第一步:整体观察,若有线性趋势则走思路A,若没有线性趋势或线性趋势不明显则走思路B。

注:线性趋势是指数列总体上往一个方向发展,即数值越来越大,或越来越小,且直观上数值的大小变化跟项数本身有直接关联(别觉得太玄乎,其实大家做过一些题后都能有这个直觉)

第二步思路A:分析趋势

1, 增幅(包括减幅)一般做加减。

基本方法是做差,但如果做差超过三级仍找不到规律,立即转换思路,因为公考没有考过三级以上的等差数列及其变式。

例1:-8,15,39,65,94,128,170,()

A.180 B.210 C. 225 D 256

解:观察呈线性规律,数值逐渐增大,且增幅一般,考虑做差,得出差23,24,26,29,34,42,再度形成一个增幅很小的线性数列,再做差得出1,2,3,5,8,很明显的一个和递推数列,下一项是5+8=13,因而二级差数列的下一项是42+13=55,因此一级数列的下一项是170+55=225,选C。

总结:做差不会超过三级;一些典型的数列要熟记在心

2, 增幅较大做乘除

例2:0.25,0.25,0.5,2,16,()

A.32 B. 64 C.128 D.256

解:观察呈线性规律,从0.25增到16,增幅较大考虑做乘除,后项除以前项得出1,2,4,8,典型的等比数列,二级数列下一项是8*2=16,因此原数列下一项是16*16=256

总结:做商也不会超过三级

3, 增幅很大考虑幂次数列

例3:2,5,28,257,()

A.2006 B。1342 C。3503 D。3126

解:观察呈线性规律,增幅很大,考虑幂次数列,最大数规律较明显是该题的突破口,注意到257附近有幂次数256,同理28附近有27、25,5附近有4、8,2附近有1、4。而数列的每一项必与其项数有关,所以与原数列相关的幂次数列应是1,4,27,256(原数列各项加1所得)即1^1,2^2,3^3,4^4,下一项应该是5^5,即3125,所以选D

总结:对幂次数要熟悉

第二步思路B:寻找视觉冲击点

注:视觉冲击点是指数列中存在着的相对特殊、与众不同的现象,这些现象往往是解题思路的导引

视觉冲击点1:长数列,项数在6项以上。基本解题思路是分组或隔项。

例4:1,2,7,13,49,24,343,()

A.35 B。69 C。114 D。238

解:观察前6项相对较小,第七项突然变大,不成线性规律,考虑思路B。长数列考虑分组或隔项,尝试隔项得两个数列1,7,49,343;2,13,24,()。明显各成规律,第一个支数列是等比数列,第二个支数列是公差为11的等差数列,很快得出答案A。

总结:将等差和等比数列隔项杂糅是常见的考法。

视觉冲击点2:摇摆数列,数值忽大忽小,呈摇摆状。基本解题思路是隔项。

20 5

例5:64,24,44,34,39,()

10

A.20 B。32 C 36.5 D。19

解:观察数值忽小忽大,马上隔项观察,做差如上,发现差成为一个等比数列,下一项差应为5/2=2.5,易得出答案为36.5

总结:隔项取数不一定各成规律,也有可能如此题一样综合形成规律。

视觉冲击点3:双括号。一定是隔项成规律!

例6:1,3,3,5,7,9,13,15,(),()

A.19,21 B。19,23 C。21,23 D。27,30

解:看见双括号直接隔项找规律,有1,3,7,13,();3,5,9,15,(),很明显都是公差为2的二级等差数列,易得答案21,23,选C

例7:0,9,5,29,8,67,17,(),()

A.125,3 B。129,24 C。84,24 D。172,83

解:注意到是摇摆数列且有双括号,义无反顾地隔项找规律!有0,5,8,17,();9,29,67,()。支数列二数值较大,规律较易显现,注意到增幅较大,考虑乘除或幂次数列,脑中闪过8,27,64,发现支数列二是2^3+1,3^3+2,4^3+3的变式,下一项应是5^3+4=129。直接选B。回头再看会发现支数列一可以还原成1-1,4+1,9-1,16+1,25-1.

总结:双括号隔项找规律一般只确定支数列其一即可,为节省时间,另一支数列可以忽略不计

视觉冲击点4:分式。

类型(1):整数和分数混搭,提示做乘除。

例8:1200,200,40,(),10/3

A.10 B。20 C。30 D。5

解:整数和分数混搭,马上联想做商,很易得出答案为10

类型(2):全分数。解题思路为:能约分的先约分;能划一的先划一;突破口在于不宜变化的分数,称作基准数;分子或分母跟项数必有关系。

例9:3/15,1/3,3/7,1/2,()

A.5/8 B。4/9 C。15/27 D。-3

解:能约分的先约分3/15=1/5;分母的公倍数比较大,不适合划一;突破口为3/7,因为分母较大,不宜再做乘积,因此以其作为基准数,其他分数围绕它变化;再找项数的关系3/7的分子正好是它的项数,1/5的分子也正好它的项数,于是很快发现分数列可以转化为1/5,2/6,3/7,4/8,下一项是5/9,即15/27

例10:-4/9,10/9,4/3,7/9,1/9

A.7/3 B 10/9 C -5/18 D -2

解:没有可约分的;但是分母可以划一,取出分子数列有-4,10,12,7,1,后项减前项得

14,2,-5,-6,(-3.5),(-0.5) 与分子数列比较可知下一项应是7/(-2)=-3.5,所以分子数列下一项是1+(-3.5)= -2.5。因此(-2.5)/9= -5/18

视觉冲击点5:正负交叠。基本思路是做商。

例11:8/9, -2/3, 1/2, -3/8,()

A 9/32 B 5/72 C 8/32 D 9/23

解:正负交叠,立马做商,发现是一个等比数列,易得出A

视觉冲击点6:根式。

类型(1)数列中出现根数和整数混搭,基本思路是将整数化为根数,将根号外数字移进根号内

例12:0 3 1 6 √2 12 ( ) ( ) 2 48

A. √3 24 B.√3 36 C.2 24 D.2 36

解:双括号先隔项有0,1,√2,(),2;3,6,12,(),48.支数列一即是根数和整数混搭类型,以√2为基准数,其他数围绕它变形,将整数划一为根数有√0 √1 √2 ()√4,易知应填入√3;支数列二是明显的公比为2的等比数列,因此答案为A

类型(2)根数的加减式,基本思路是运用平方差公式:a^2-b^2=(a+b)(a-b)

例13:√2-1,1/(√3+1),1/3,()

A(√5-1)/4 B 2 C 1/(√5-1) D √3

解:形式划一:√2-1=(√2-1)(√2+1)/(√2+1)=(2-1)/ (√2+1)=1/(√2+1),这是根式加减式的基本变形形式,要考就这么考。同时,1/3=1/(1+2)=1/(1+√4),因此,易知下一项是1/(√5+1)=( √5-1)/[( √5)^2-1]= (√5-1)/4.

视觉冲击点7:首一项或首两项较小且接近,第二项或第三项突然数值变大。基本思路是分组递推,用首一项或首两项进行五则运算(包括乘方)得到下一个数。

例14:2,3,13,175,()

A.30625 B。30651 C。30759 D。30952

解:观察,2,3很接近,13突然变大,考虑用2,3计算得出13有2*5+3=3,也有3^2+2*2=13等等,为使3,13,175也成规律,显然为13^2+3*2=175,所以下一项是175^2+13*2=30651

总结:有时递推运算规则很难找,但不要动摇,一般这类题目的规律就是如此。

视觉冲击点8:纯小数数列,即数列各项都是小数。基本思路是将整数部分和小数部分分开考虑,或者各成单独的数列或者共同成规律。

例15:1.01,1.02,2.03,3.05,5.08,()

A.8.13 B。 8.013 C。7.12 D 7.012

解:将整数部分抽取出来有1,1,2,3,5,(),是一个明显的和递推数列,下一项是8,排除C、D;将小数部分抽取出来有1,2,3,5,8,()又是一个和递推数列,下一项是13,所以选A。

总结:该题属于整数、小数部分各成独立规律

例16:0.1,1.2,3.5,8.13,( )

A 21.34 B 21.17 C 11.34 D 11.17

解:仍然是将整数部分与小数部分拆分开来考虑,但在观察数列整体特征的时候,发现数字非常像一个典型的和递推数列,于是考虑将整数和小树部分综合起来考虑,发现有新数列0,1,1,2,3,5,8,13,(),(),显然下两个数是8+13=21,13+21=34,选A

总结:该题属于整数和小数部分共同成规律

视觉冲击点9:很像连续自然数列而又不连贯的数列,考虑质数或合数列。

例17:1,5,11,19,28,(),50

A.29 B。38 C。47 D。49

解:观察数值逐渐增大呈线性,且增幅一般,考虑作差得4,6,8,9,……,很像连续自然数列而又缺少5、7,联想和数列,接下来应该是10、12,代入求证28+10=38,38+12=50,正好契合,说明思路正确,答案为38.

视觉冲击点10:大自然数,数列中出现3位以上的自然数。因为数列题运算强度不大,不太可能用大自然数做运算,因而这类题目一般都是考察微观数字结构。

例18:763951,59367,7695,967,()

A.5936 B。69 C。769 D。76

解:发现出现大自然数,进行运算不太现实,微观地考察数字结构,发现后项分别比前项都少一位数,且少的是1,3,5,下一个缺省的数应该是7;另外缺省一位数后,数字顺序也进行颠倒,所以967去除7以后再颠倒应该是69,选B。

例19:1807,2716,3625,()

A.5149 B。4534 C。4231 D。5847

解:四位大自然数,直接微观地看各数字关系,发现每个四位数的首两位和为9,后两位和为7,观察选项,很快得出选B。

第三步:另辟蹊径。

一般来说完成了上两步,大多数类型的题目都能找到思路了,可是也不排除有些规律不容易直接找出来,此时若把原数列稍微变化一下形式,可能更易看出规律。

变形一:约去公因数。数列各项数值较大,且有公约数,可先约去公约数,转化成一个新数列,找到规律后再还原回去。

例20:0,6,24,60,120,()

A.186 B。210 C。220 D。226

解:该数列因各项数值较大,因而拿不准增幅是大是小,但发现有公约数6,约去后得0,1,4,10,20,易发现增幅一般,考虑做加减,很容易发现是一个二级等差数列,下一项应是20+10+5=35,还原乘以6得210。

变形二:因式分解法。数列各项并没有共同的约数,但相邻项有共同的约数,此时将原数列各数因式分解,可帮助找到规律。

例21:2,12,36,80,()

A.100 B。125 C 150 D。175

解:因式分解各项有1*2,2*2*3,2*2*3*3,2*2*2*2*5,稍加变化把形式统一一下易得1*1*2,2*2*3,3*3*4,4*4*5,下一项应该是5*5*6=150,选C。

变形三:通分法。适用于分数列各项的分母有不大的最小公倍数。

例22:1/6,2/3,3/2,8/3,()

A.10/3 B.25/6 C.5 D.35/6

解:发现分母通分简单,马上通分去掉分母得到一个单独的分子数列1,4,9,16,()。增幅一般,先做差的3,5,7,下一项应该是16+9=25。还原成分母为6的分数即为B。

第四步:蒙猜法,不是办法的办法。

有些题目就是百思不得其解,有的时候就剩那么一两分钟,那么是不是放弃呢?当然不能!一分万金啊,有的放矢地蒙猜往往可以救急,正确率也不低。下面介绍几种我自己琢磨的蒙猜法。

第一蒙:选项里有整数也有小数,小数多半是答案。

见例5:64,24,44,34,39,()

A.20 B。32 C 36.5 D。19

直接猜C!

例23:2,2,6,12,27,()

A.42 B 50 C 58.5 D 63.5

猜:发现选项有整数有小数,直接在C、D里选择,出现“.5”的小数说明运算中可能有乘除关系,观察数列中后项除以前项不超过3倍,猜C

正解:做差得0,4,6,15。(0+4)*1.5=6 (2+6)*1.5=12 (4+6)*1.5=15 (6+15)*1.5=31.5,所以原数列下一项是27+31.5=58.5

第二蒙:数列中出现负数,选项中又出现负数,负数多半是答案。

例24:-4/9,10/9,4/3,7/9,1/9,( )

A.7/3 B.10/9 C -5/18 D.-2

猜:数列中出现负数,选项中也出现负数,在C/D两个里面猜,而观察原数列,分母应该与9有关,猜C。

第三蒙:猜最接近值。有时候貌似找到点规律,算出来的答案却不在选项中,但又跟某一选项很接近,别再浪费时间另找规律了,直接猜那个最接近的项,八九不离十!

例25:1,2,6,16,44,()

A.66 B。84 C。88 D。120

猜:增幅一般,下意识地做了差有1,4,10,28。再做差3,6,18,下一项或许是(6+18)*2=42,或许是6*18=108,不论是哪个,原数列的下一项都大于100,直接猜D。

例26:0.,0,1,5,23,()

A.119 B。79 C 63 D 47

猜:首两项一样,明显是一个递推数列,而从1,5递推到25必然要用乘法,而5*23=115,猜最接近的选项119

第四蒙:利用选项之间的关系蒙。

例27:0,9,5,29,8,67,17,(),()

A.125,3 B129,24 C 84,24 D172 83

猜:首先注意到B,C选项中有共同的数值24,立马会心一笑,知道这是阴险的出题人故意设置的障碍,而又恰恰是给我们的线索,第二个括号一定是24!而根据之前总结的规律,双括号一定是隔项成规律,我们发现偶数项9,29,67,()后项都是前项的两倍左右,所以猜129,选B

例28:0,3,1,6,√2,12,(),(),2,48

A.√3,24 B。√3,36 C 2,24 D√2,36

猜:同上题理,第一个括号肯定是√3!而双括号隔项成规律,3,6,12,易知第二个括号是24,很快选出A

[img]

学数列有什么技巧吗

按一定次序排列的一列数叫数列。记作,即a1, a2, a3,……。我们称a1为数列的“第一项”,a2是“第二项”,等等。数列中数的总数为数列的“项数”,项数有限的数列为“有限数列”,项数无限的数列为“无限数列”。特别地,数列是一种特殊的函数,它的自变量为自然数。

著名的数列

有等差数列、等比数列、斐波那契数列、大衍数列等。

一、 等差数列

如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。

等差数列的通项公式为:

an=a1+(n-1)d (1)

前n项和公式为:

Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)

从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项。

且任意两项am,an的关系为:

an=am+(n-m)d

它可以看作等差数列广义的通项公式。

从等差数列的定义、通项公式,前n项和公式还可推出:

a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}

若m,n,p,q∈N*,且m+n=p+q,则有

am+an=ap+aq

Sm-1=(2n-1)an,S2n+1=(2n+1)an+1

Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。

和=(首项+末项)*项数÷2

项数=(末项-首项)÷公差+1

首项=2和÷项数-末项

末项=2和÷项数-首项

项数=(末项-首项)/公差+1

二、等比数列

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1*q^(n-1)

(2)前n项和公式是:Sn=[A1(1-q^n)]/(1-q)

且任意两项am,an的关系为an=am·qn-m

(3)从等比数列的定义、通项公式、前n项和公式可以推出: a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)若m,n,p,q∈N*,则有:ap·aq=am·an,

等比中项:aq·ap=2ar ar则为ap,aq等比中项。

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

性质:

①若 m、n、p、q∈N,且m+n=p+q,则am·an=ap*aq;

②在等比数列中,依次每 k项之和仍成等比数列.

“G是a、b的等比中项”“G^2=ab(G≠0)”.

在等比数列中,首项A1与公比q都不为零.

注意:上述公式中A^n表示A的n次方。

三、斐波拉契数列

■斐波拉契数列的简介

斐波拉契数列(又译作“斐波那契数列”)是一个非常美丽、和谐的数列,它的形状可以用排成螺旋状的一系列正方形来说明(如右词条图),起始的正方形(图中用灰色表示)的边长为1,在它左边的那个正方形的边长也是1 ,在这两个正方形的上方再放一个正方形,其边长为2,以后顺次加上边长为3、5、8、13、2l……等等的正方形。这些数字每一个都等于前面两个数之和,它们正好构成了斐波那契数列。“斐波那契数列”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年。籍贯大概是比萨)。他被人称作“比萨的列昂纳多”。1202年,他撰写了《珠算原理》(Liber Abaci)一书。他是第一个研究了印度和阿拉伯数学理论的欧洲人。他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。

斐波那契数列指的是这样一个[font color=#800080]数列[/font]:1,1,2,3,5,8,13,21……

这个数列从第三项开始,每一项都等于前两项之和。它的通项公式为:(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根) (19世纪法国数学家敏聂(Jacques Phillipe Marie Binet 1786-1856)

很有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。

■斐波拉契数列的出现

13世纪初,欧洲最好的数学家是斐波拉契;他写了一本叫做《算盘书》的著作,是当时欧洲最好的数学书。书中有许多有趣的数学题,其中最有趣的是下面这个题目:

“如果一对兔子每月能生1对小兔子,而每对小兔在它出生后的第3个月裏,又能开始生1对小兔子,假定在不发生死亡的情况下,由1对初生的兔子开始,1年后能繁殖成多少对兔子?”

斐波拉契把推算得到的头几个数摆成一串:1,1,2,3,5,8……

这串数里隐含着一个规律:从第3个数起,后面的每个数都是它前面那两个数的和。而根据这个规律,只要作一些简单的加法,就能推算出以后各个月兔子的数目了。

于是,按照这个规律推算出来的数,构成了数学史上一个有名的数列。大家都叫它“斐波拉契数列”。这个数列有许多奇特的的性质,例如,从第3个数起,每个数与它后面那个数的比值,都很接近于0.618,正好与大名鼎鼎的“黄金分割律”相吻合。人们还发现,连一些生物的生长规律,在某种假定下也可由这个数列来刻画呢。B

■斐波拉契数列的来源及关系/B

斐波拉契(Fibonacci)数列来源于兔子问题,它有一个递推关系,

f(1)=1

f(2)=1

f(n)=f(n-1)+f(n-2),其中n=2

{f(n)}即为斐波拉契数列。

B■斐波拉契数列的公式

/B它的通项公式为:{[(1+√5)/2]^n - [(1-√5)/2]^n }/√5 (注:√5表示根号5)

■斐波拉契数列的某些性质

■1),f(n)f(n)-f(n+1)f(n-1)=(-1)^n;

■2), f(1)+f(2)+f(3)+……+f(n)=f(n+2)-1

■3),arctan[1/f(2n+1)]=arctan[1/f(2n+2)]+arctan[1/f(2n+3)]

[font class=arr][/font][font class=t1][font size=3]【斐波拉契数列的存在】[/font][/font]

甚至可以说,斐波拉契数列无处不在,以下仅举几条常见的例子

■1.杨辉三角对角线上各数之和构成斐波拉契数列 .

■2.多米诺牌(可以看作一个2×1大小的方格)完全覆盖一个n×2的棋盘,覆盖的方案数等于斐波拉契数列。

■3. 从蜜蜂的繁殖来看,雄峰只有母亲,没有父亲,因为蜂后产的卵,受精的孵化为雌蜂,未受精的孵化为雄峰。人们在追溯雄峰的祖先时,发现一只雄峰的第n代祖先的数目刚好就是斐波拉契数列的第n项Fn。

■4.钢琴的13个半音阶的排列完全与雄峰第六代的排列情况类似,说明音调也与斐波拉契数列有关。

■5.自然界中一些花朵的花瓣数目符合于斐波拉契数列,也就是说在大多数情况下,一朵花花瓣的数目都是3,5,8,13,21,34,……(有6枚是两套3枚;有4枚可能是基因突变)。

■6.如果一根树枝每年长出一根新枝,而长出的新枝两年以后,每年也长出一根新枝,那么历年的树枝数,也构成一个斐波拉契数列 .

[font class=arr][/font][font class=t1][font size=3]【斐波拉契数列与黄金分割】[/font][/font]

斐波拉契数列与黄金分割有什么关系呢?经研究发现,相邻两个斐波拉契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n-1)/f(n)-→0.618…。由于斐波拉契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数。但是当我们继续计算出后面更大的斐波拉契数时,就会发现相邻两数之比确实是非常接近黄金分割比的。

不仅这个由1,1,2,3,5....开始的"斐波拉契数"是这样,随便选两个整数,然后按照斐波拉契数的规律排下去,两数间比也是会逐渐逼近黄金比的.

[font class=arr][/font][font class=t1][font size=3]【斐波拉契数列的变式】[/font][/font]

■1.帕多瓦数列:1,1,1,2,2,3,4,5,7,9,12,16,21,……这样的数列称为帕多瓦数列。它和斐波拉契数列非常相似,稍有不同的是:每个数都是跳过它前面的那个数,并把再前面的两个数相加而得出的。这个数列可以用另一幅图来表示,它是由一些等边三角形构成的(如右图)。开始的三角形用灰色表示,为了使这些三角形天衣无缝地拼在一起,头三个三角形的边长均为1,其后的两个三角形的边长为2,然后依次是3、4、5、7、9、12、16、2l……等等。

■2.冬冬有15块糖,如果每天至少吃3块,吃完为止,那么共有多少种不同的吃法?

如果冬冬有3块糖、4块糖或者5块糖,都只有1种吃法;如果有6块糖,则有2种吃法;如果有7块糖,则有3种吃法;如果有8块糖,则有4种吃法;如果有9块糖,则有6种吃法.

既:吃糖的粒数:3 4 5 6 7 8 9 10 11 12...

糖的吃法:1 1 1 2 3 4 6 9 13 19...

这样的数列,它和斐波拉契数列不同的是,每次都是跳过中间的那个数,再把第1、3两个数相加,等于第4个数。它的规律和斐波拉契数列既相似之处又有不同之处.

■3.小明要上楼梯,他每次能向上走一级、两级或三级,如果楼梯有10级,他有几种不同的走法?

这里我们不妨也来研究一下其中的规律:如果楼梯就一级,他有1种走法;如果楼梯有两级,他有2种走法;如果楼梯有三级,他有4种走法;如果有五级楼梯,他有7种走法.

既:楼梯的级数:1 2 3 4 5 6 7 8 ...

上楼梯的走法:1 2 4 7 13 24 44 81...

这其中的规律就是,这里从第4个数开始,每一个数都等于它前面的3个数之和。

B

[font class=arr][/font][font class=t1][font size=3]【该数列有很多奇妙的属性】[/font][/font]

/B

比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887…… (后一项与前一项之比1.6180339887…… )

还有一项性质,从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。

如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。

如果任意挑两个数为起始,比如5、-2.4,然后两项两项地相加下去,形成5、-2.4、2.6、0.2、2.8、3、5.8、8.8、14.6……等,你将发现随着数列的发展,前后两项之比也越来越逼近黄金分割,且某一项的平方与前后两项之积的差值也交替相差某个值。

斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。

[font class=arr][/font][font class=t1][font size=3]【斐波那契数列别名】[/font][/font]

/B

斐波那契数列又因数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”。

斐波那契数列

一般而言,兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子来。如果所有兔都不死,那么一年以后可以繁殖多少对兔子?

我们不妨拿新出生的一对小兔子分析一下:

第一个月小兔子没有繁殖能力,所以还是一对;

两个月后,生下一对小兔民数共有两对;

三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对;

------

依次类推可以列出下表:

经过月数:0 1 2 3 4 5 6 7 8 9 10 11 12

兔子对数:1 1 2 3 5 8 13 21 34 55 89 144 233

表中数字1,1,2,3,5,8---构成了一个数列。这个数列有关十分明显的特点,那是:前面相邻两项之和,构成了后一项。

这个数列是意大利中世纪数学家斐波那契在<算盘全书>中提出的,这个级数的通项公式,除了具有a(n+2)=an+a(n+1)/的性质外,还可以证明通项公式为:an=1/√[(1+√5/2) n-(1-√5/2) n](n=1,2,3.....)

[font class=arr][/font][font class=t1][font size=3]【斐波那契数列通项公式的推导】[/font][/font]

斐波那契数列:1,1,2,3,5,8,13,21……

如果设F(n)为该数列的第n项(n∈N+)。那么这句话可以写成如下形式:

F(1)=F(2)=1,F(n)=F(n-1)+F(n-2) (n≥3)

显然这是一个线性递推数列。

通项公式的推导方法一:利用特征方程

线性递推数列的特征方程为:

X^2=X+1

解得

X1=(1+√5)/2, X2=(1-√5)/2.

则F(n)=C1*X1^n + C2*X2^n

∵F(1)=F(2)=1

∴C1*X1 + C2*X2

C1*X1^2 + C2*X2^2

解得C1=1/√5,C2=-1/√5

∴F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n} (√5表示5的平方根)

通项公式的推导方法二:普通方法

设常数r,s

使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

则r+s=1, -rs=1

n≥3时,有

F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]

F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]

F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]

……

F(3)-r*F(2)=s*[F(2)-r*F(1)]

将以上n-2个式子相乘,得:

F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]

∵s=1-r,F(1)=F(2)=1

上式可化简得:

F(n)=s^(n-1)+r*F(n-1)

那么:

F(n)=s^(n-1)+r*F(n-1)

= s^(n-1) + r*s^(n-2) + r^2*F(n-2)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)

……

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)

= s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)

(这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公差的[font color=#800080]等比数列[/font]的各项的和)

=[s^(n-1)-r^(n-1)*r/s]/(1-r/s)

=(s^n - r^n)/(s-r)

r+s=1, -rs=1的一解为 s=(1+√5)/2, r=(1-√5)/2

则F(n)=(1/√5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}

四、大衍[font color=#800080]数列[/font]

大衍[font color=#800080]数列[/font],来源于《乾坤谱》中对易传“[font color=#800080]大衍之数[/font]五十”的推论。

0、2、4、8、12、18、24、32、40、50------(n*n-1)/2(n为奇数)、n*n/2(n为偶数)

数列解题方法技巧总结

人生需要反思,总结才能远航,回首往夕,收获的是经验和提高。下面就是我整理的数列解题方法技巧总结,一起来看一下吧。

学生们在高中的数学学习过程中如果能够充分掌握高中数学数列试题的解题方法和技巧,这对于在大学期间学习数学会有很大的帮助。在最近几年的数学高考中,数列知识点的考查已经成为高考出题人比较看重的一项考点,甚至有一部分拔高题也都和数列有着直接的关系。可是在高中数学的学习阶段,很多的学生对于高中数学数列试题的解题方法和技巧还非常欠缺,对有一些问题和内容并没有得到充分的理解和吸收,往往在解题过程中,出现这样那样的问题。所以,探索和研究不同类型数列的解题方法和技巧,能够帮助学生更好地学好高中的数学。

高中数学数列试题教学中的解题思路与技巧

1.对数列概念的考查

在高中数列试题中,有一些试题可以直接通过带入已学的通项公式或求和公式,就可以得到答案,面对这一种类型的试题,没有什么技巧而言,我们只需熟练掌握相关的数列公式即可。

例如:在各项都为正数的等比数列{b}中,首项b1=3,b1+b2+b3=21,那么b3+b4+b5等于多少?

解析:(1)本道试题主要是对正项数列的概念以及等比数列的通项公式和求和公式知识点的考查,考查学生对数列基础知识和基本运算的掌握能力。

(2)本试题要求学生要熟练掌握老师在课堂上所教的通项公式和求和公式。

(3)首先让我们来求公比,很明显q不等1,那么我们可以根据我们所学过的等比数列前项和公式,列出关于公比的方程,即3(1-q3)/(1-q)=21。

对于这个方程,我们首先要选择其运算的方式,要求学生平时的练习过程中,要让学生能够熟练地将高次方程转化为低次方程进行运算。

2.对数列性质的考察

有些数列的试题中,经常会变换一些说法来考查学生对数列的基本性质的`理解和掌握能力。

例如:己知等差数列{xn},其中xl+x7=27,求x2+x3+x5+x6等于多少?

解析:我们在课堂上学习过这样的公式:等差数列和等比数列中m+n=p+q,我们可以充分利用这一特性来解此题,即:

xl+x7= x2+x6= x3+x5=27,

因此,x2+x3+x5+x6=(x2+x6)+(x3+x5)=27+27=54

这种类型的数列试题要求教师在课堂教学中,对数列的性质竟详细讲解,仔细推导。使得学生能够真正的理解数列性质的来源。

3.对求通项公式的考察

①利用等差、等比数列的通项公式,求通项公式

②利用关系an={S1,n=1;Sn-Sn-1,n≥2}求通项公式

③利用叠加、叠乘法求通项公式

④利用数学归纳法求通项公式

⑤利用构造法求通项公式.

4.求前n项和的一些方法

在最近几年的数学高考试题中,数列通项公式和数列求和这两个知识点是每年必考的,因此,在高中数学数列的课堂教学中,教师要对数列求和通项公式这方面的知识点进行细致重点的讲解。数列求和的主要解题方法有错位相减法、分组求和法与合并求和法,下面对三种数列求和的解题方法进行详细说明。

(1)错位相减法

错位相减法主要应用于等比数列的求和中,在最近几年的高考试题当中,以此方法来求解数列求和的试题经常会有所体现。这一类型的试题解题方法主要是运用于诸如{等差数列·等比数列}数列前n项和的求和中。

例如:已知{xn}是等差数列,其前n项和是Sn,{yn}是等比数列,且x1=y1=2, x4+y4=27, S4-y4=10,求(1)求数列{xn}与{yn}的通项公式;(2)Tn= xny1+xn-1y2+…+x1yn,n∈N*证明Tn+12=-2xn+10yn,n∈N*

解析:(1)xn=3n-1,yn=2n;

(2)Tn= 2xn+22xn-1+23xn-2+…+2nx1,

2Tn= 22xn+23xn-1+…+2nx2+2n+1x1

计算得,Tn=-2(3n-1)+3×22+3×23+…+3×2n+2n+1=12(1-2n+1)/(1-2+2n+2-6n+2)=10×2n-6n-10

-2an+10bn-12=-2(3n-1)+10×2n-12=10×2n-6n-10

所以,Tn+12=-2xn+10yn,n∈N*

错位相减法主要应用于形如an=bncn,即等差数列·等比数列,这样的数列求和试题运算中,解此类题的技巧是:首先分别列出等差数列和等比数列的前n的和,即Sn,然后再分别将Sn的两侧同时乘以等比数列的公比q,得出qSn;最后错一位,再将两边的式子进行相减就可以了。

(2)分组法求和

在高中数列的试题当中,往往会遇到一部分没有规律的数列试题,它们初看上去既不属于等差数列也不属于等比数列,但是如果将此类型的数列进行拆分,就可以得到我们所了解的等差数列和等比数列,遇到此类型的数列试题,我们就可以通过分组法求和的方法进行解题,首先将数列进行拆分,通过得到的等差数列和等比数列进行运算,最后将其结合在一起得出试题的答案。

(3)合并法求和

在高考数列的试题中,往往会遇到一些非常特殊的题型,它们初看上去没有规律可循,但是通过合并和拆分,就可以找出它们的特殊性质。这就要求我们教师平时要锻炼学生对数列的合并能力,通过合并找出规律,最终成功地解决这类特殊数列的求和问题。

结束语

数列知识是各种数学知识的连接点,在数学考试中,往往是基于数列知识为基础,对学生的综合数学知识进行考查。在高中数列学习过程中,首先要做好数列基本概念和基本性质的掌握,否则任何解题技巧都无济于事。

关于九师联盟数列技巧和九师联盟的题怎么样的介绍到此就结束了,不知道同学们从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

本文转载自互联网,如有侵权,联系删除